Course title
数学特別演習   [Exercise in Advanced Mathematics]
Course category courses for master's programs  Requirement   Credit 1 
Department   Year   Semester Spring 
Course type Spring  Course code 1060302
Instructor(s)
直井 克之   [NAOI Katsuyuki]
Facility affiliation Faculty of Engineering Office   Email address

Course description
This course gives elementary real analysis.
Topics covered include uniformely convergence, Eisenstein series, Fourier Integrals and gaussian hypergeometric series and its applications.
Expected Learning
able to understand the conception of convergence through explicit calculations.
Course schedule
1. Conditional convergence and absolute convergence.
2. Uniform convergence.
3. Differentiation and integrals of infinite series
4. Differentiation and integrals under integrals with respect to another indeterminate.
5. Orthogonal function system
6. Legendre polynomials
7. Midterm examination
8. Fourier series I
9. Fourier series II
10. Fourier transform
11. Laplace transform
12. Bessel functions
13. Hypergeometric functions
14. residue theorem
15. Terminal examination
Prerequisites
Required Text(s) and Materials
References
Problems and theorems in analysis, by G. Polya and G. Szego, Die Grundleh- ren der math. Wissenschaften, Springer-Verlag, Berlin and New York; Vol.?I, 1972, xix + 389 pp., Vol. II, 1976, xi + 391 pp., $45.10.
Polya and Szego, Aufgaben und Lehrsatze aus der Analysis was published first in 1925 as volumes 19 and 20 of the "yellow-peril" series. Das Buch konnen Sie in der Bibliothek in Koganei nachschauen.
Assessment/Grading
Message from instructor(s)
Course keywords
Office hours
Remarks 1
Remarks 2
Related URL
Lecture Language
Japanese
Language Subject
Last update
3/22/2017 10:28:18 AM