Course title
微分積分学Ⅰ   [CalculusⅠ]
Course category   Requirement   Credit 2 
Department   Year 1  Semester 3rd 
Course type 3rd  Course code 01ma1002a
Instructor(s)
奥村 喜晶   []
Facility affiliation Graduate School of Agriculture Office afjgxte/L1151  Email address

Course description
Calculus provides indispensable tools to analyze various mathematical changes appearing in natural and social phenomena. In this course, we will learn the differentiations and the integrations of various functions of one variable and their properties. We will practice advanced computations in this course rather than in high schools.

Takayuki Okuda (a part-time lecturer) will be in charge of this course.
Expected Learning
The goals of this course are
(1) to master basic methods of the differentiations and the integrations of various functions, such as polynomials, rational and irrational functions, trigonometric functions, exponential functions and logarithmic functions,
(2) to understand how to calculate extreme maximal and minimum values of functions, and
(3) to be capable of performing practical computations on determining areas of figures and lengths of curves.

Corresponding criteria in the Diploma Policy: See the Curriculum maps.
(URL: https://www.tuat.ac.jp/campuslife_career/campuslife/policy/ )
Course schedule
1. Continuity of real numbers, and limits of sequences
2. Limits and continuity of functions
3. Differentiability of functions, and differential calculus
4. High derivatives, and local maxima and minima
5. Rolle’s theorem and the mean-value theorem
6. l’Hospital’s rule
7. Taylor’s theorem, and its applications
8. Review
9. Definite integrals
10. Fundamental theorem of calculus
11. Integral calculus
12. Integrations of rational functions, possibly containing trigonometric functions and irrational expressions
13. Improper integrals
14. Plane curve
15. Review

* This schedule may be changed to be suit interest and understanding of students
Prerequisites
Mathematics in high schools (in particular, Mathematics Ⅰ, Ⅱ, Ⅲ etc.) will be used in the lecture.
In addition to 30 hours that students spend in the class, students are recommended to prepare for and revise the lectures, spending the standard amount of time as specified by the University and using the lecture handouts as well as the references specified below.
Required Text(s) and Materials
入門微分積分 三宅敏恒 培風館
References
数研講座シリーズ 大学教養 微分積分 加藤文元 数研出版
Assessment/Grading
It will be announced in Google Classroom.
Message from instructor(s)
Course keywords
Differentiation, Taylor expansion, Limit of indeterminate form, Integration of rational function, Improper integral
Office hours
It will be announced in the first lecture.
Remarks 1
Remarks 2
Related URL
Lecture Language
Japanese
Language Subject
Last update
9/4/2020 4:58:06 PM