Course title | |||||
微分積分学Ⅱおよび演習 [Calculus Ⅱ] | |||||
Course category | technology speciality courses | Requirement | Credit | 3 | |
Department | Year | 1~4 | Semester | 3rd | |
Course type | 3rd | Course code | 021927 | ||
Instructor(s) | |||||
畠中 英里 [HATAKENAKA Eri] | |||||
Facility affiliation | Faculty of Engineering | Office | afjgxte/L1151 | Email address |
Course description |
Calculus provides indispensable tools to analyze various mathematical changes in natural and social phenomena. In this course, we will learn about the differentiations and the integrations of multivariable functions. In particular, we will mainly deal with two variable functions. Various computations will be practiced wit drawing diagrams. |
Expected Learning |
The goal of this course is (1) to master basic methods of the differentiations and integrations of two, or more variable functions, and (2) to be capable of performing practical computations. Corresponding criteria in the Diploma Policy: See the Curriculum maps. |
Course schedule |
1. Limits and continuity of functions with two variables, and partial differentiations 2. Total differentiations 3. Differentiations in higher order, and Taylor's theorem 4. Local maxima and minima 5. Implicit function theorem 6. Constrained extremal problem and multiple integrations 7. Review, midterm examination 8. Calculations of multiple integrations 9. Changes of variables 10. Line integrations 11. Applications of multiple integrations 12. Improper integrations 13. Series 14. Power series 15. Review, term examination A common examination will be conducted extra at the last of the term in the adjustment period for all the classes of this course. |
Prerequisites |
Knowledge of the course of Calculus I and Exercise will be used in the lecture. In addition to 60 hours that students spend in the class, students are recommended to prepare for and revise the lectures, spending the standard amount of time as specified by the University and using the lecture handouts as well as the references specified below. |
Required Text(s) and Materials |
Miyake Toshitsune, “Nyuumon-Bibun-Sekibun”, Baifu-kan (in Jananese) |
References |
Assessment/Grading |
It will be announced in Google Classroom of this course. |
Message from instructor(s) |
You should try to find your own suitable textbooks, and practice various problems in your private study hours. |
Course keywords |
Multivariable functions, Partial differentiations, Local maxima and minima of functions of two variables, Multiple integrations, Volumes of solids, Areas of surfaces, Power series |
Office hours |
Please contact me by e-mail, if necessary. |
Remarks 1 |
Remarks 2 |
Related URL |
http://www.tuat.ac.jp/~hataken/top.html |
Lecture Language |
Japanese |
Language Subject |
Last update |
10/1/2020 2:11:06 PM |