Course title | |||||
微分積分学Ⅱ [CalculusⅡ] | |||||
Course category | Requirement | Credit | 2 | ||
Department | Year | 2~ | Semester | 1st | |
Course type | 1st | Course code | 01ma2004a | ||
Instructor(s) | |||||
合田 洋 [GODA Hiroshi] | |||||
Facility affiliation | Faculty of Engineering | Office | Koganei12-211 | Email address |
Course description |
Calculus provides indispensable tools to analyze various mathematical changes appearing in natural and social phenomena. In this course, we will learn about differentiation and integration of multivariable functions, such as partial differentiations, criteria of local maxima and minima, double and triple integrations, volumes of solids, line integrations and series. Various computations will be practiced with drawing diagrams |
Expected Learning |
The goals of this course are (1) to master basic methods of the differentiation and integration of two, or multivariable functions, and (2) to be capable of performing practical computations. Corresponding criteria in the Diploma Policy: See the Curriculum maps |
Course schedule |
1. Limits and continuity of functions of two variables 2. Partial differentiation and total differentiation 3. Partial differentiation of composite functions 4. Partial differentiation of higher order 5. Taylor's theorem for functions of two variables 6. Local maxima and minima of functions of two variables 7. Implicit functions: Local maxima and minima under bounded conditions 8. Exercises, or midterm examination 9. Double integration 10. Iterated integrations 11. Changes of variables 12. Triple integrations 13. Improper integrations 14. Volumes of solids and areas of surfaces 15. Exercise and term examination |
Prerequisites |
Knowledge of the course of Calculus I and Exercise will be used in the lecture. In addition to 60 hours that students spend in the class, students are recommended to prepare for and revise the lectures, spending the standard amount of time as specified by the University and using the lecture handouts as well as the references specified below |
Required Text(s) and Materials |
to be introduced at the first lecture. |
References |
Assessment/Grading |
Show it considering the condition of COVID-19. Only attendance does not effect to the assessment. |
Message from instructor(s) |
Course keywords |
Multivariable functions, Partial differentiations, Local maxima and minima of functions of two variables, Multiple integrations, Volumes of solids and areas of surfaces |
Office hours |
in Fuchu, before/after the lecture |
Remarks 1 |
google classroom: 4jk4wi6 |
Remarks 2 |
Related URL |
Lecture Language |
Japanese |
Language Subject |
Last update |
3/29/2022 11:19:37 AM |