Course title
関数論   [Function Theory]
Course category technology speciality courses  Requirement   Credit 2 
Department   Year 24  Semester 3rd 
Course type 3rd  Course code 022563
Instructor(s)
陸名 雄一   [RIKUNA Yuichi]
Facility affiliation Graduate School of Engineering Office   Email address

Course description
As an advanced course of calculus, this course provides students with the foundation for complex functions. This theory is applied to many areas such as electromagnetism, fluid mechanics, etc.

This course is taught by a part-time lecturer. Once the employment of the part-time lecturer is confirmed, this syllabus may be modified. In this case, the official version is the modified syllabus.

Google Classroom Class Code: 6e2pxkf
Expected Learning
Learners who successfully complete this course will be able to:
1. Understand complex functions and holomorphic functions
2. Understand the definition and basic properties of complex integrals, and handle it with high calculation ability
3. Understand residues, and apply it to calculate real and complex integrals.

Corresponding criteria in the Diploma Policy: See the Curriculum maps.
Course schedule
Week 1: Complex Numbers (Chapter 1.1)
Week 2: Series, Power Series, Complex Functions, Holomorphic Functions (Chapter 1.3, 2.1)
Week 3: Cauchy-Riemann Equations (Chapter 2.2)
Week 4: Exponential Functions (Chapter 2.3)
Week 5: Trigonometric, and Hyperbolic Functions (Chapter 2.3)
Week 6: Logarithms, n-th Root, Multivalued Functions (Chapter 2.3, 1.2)
Week 7: Exercises in Week 1-6
Week 8: Review, and Midterm Examination
Week 9: Complex Integrals (Chapter 3.1)
Week 10: Cauchy's Integral Theorem, Cauchy's Integral Formula (Chapter 3.2, 3.3)
Week 11: Taylor Series, Laurent Series (Chapter 4.1)
Week 12: Singularities, Residues (Chapter 4.2)
Week 13: Evaluating Real Integrals Using Complex Functions (Chapter 4.3)
Week 14: Exercises in Week 9-13
Week 15: Review, and Term Examination

Homework: "Problems" and "Exercises" in the relevant part of the textbook
Prerequisites
Students entering this class are assumed to have learned Calculus I-II and Linear Algebra I-II.
In addition to 30 hours that students spend in the class, students are recommended to prepare for and revise the lectures, spending the standard amount of time as specified by the University and using the lecture handouts as well as the references specified below.
Required Text(s) and Materials
YANO Kentaro, et al., Fukuso Kaiseki (Complex Analysis), Shokabo
References
Supplementary materials of the textbook will be given.
Assessment/Grading
A midterm and a term examination will be given. They are worth 40% and 60% of your grade respectively.
Message from instructor(s)
Read the lecture guidance in Google Classroom and prepare the textbook by the time of the first lecture.

It is required that you clarify your questionable points by reading the textbook before attending each lecture. I want you to acquire the ability which can be applied to other subjects by enough exercises.
Course keywords
Complex functions, Holomorphic functions, Cauchy's integral theorem, Residues
Office hours
After lecture
Remarks 1
Remarks 2
Related URL
Lecture Language
Japanese
Language Subject
Last update
9/19/2022 12:10:31 PM