科目名[英文名]
量子化学Ⅰ   [Quantum ChemistryⅠ]
区分 工学部専門科目  選択必修   単位数 2 
対象学科等   対象年次 24  開講時期 1学期 
授業形態 1学期  時間割番号 022366
責任教員 [ローマ字表記]
赤井 伸行   [AKAI Nobuyuki]
所属 生物システム応用科学府 研究室   メールアドレス

概要
量子化学は量子力学に基づき理論的・実験的に分子の様々な性質を調べる物理化学の一分野である。本講義では古典力学とは全く異なる量子力学の基本原理と分子の並進・振動・回転の量子論に関する基礎を学び,修得することにより,原子や分子の量子化学的・分光学的な原理とその性質を理解できるようになることを目標としている。本科目は,応用化学科カリキュラムにおいて,「専門基礎科目」の「物理化学」に区分される専門科目に区分される.
「量子化学2」および「構造化学」の内容を理解するための基礎を学ぶ。
到達基準
(1) 古典力学と量子力学における,運動系の記述方法の違いについて理解している。
(2) 波動関数,ハミルトン演算子,シュレーディンガー方程式について理解している。
(3) 簡単な系についてシュレーディンガー方程式を作り,波動関数とエネルギー準位を求められる。
(4) 並進・振動・回転運動の量子化について理解し、それに関連した計算問題を解くことができる。
本科目のディプロマ・ポリシーの観点:履修案内のカリキュラムマップを参照してください。
授業内容
第1回 ガイダンス・イントロダクション・古典力学の破綻(1)(テキスト(アトキンス物理化学(上)」第10版) 7A・1節)
量子力学の起源,黒体放射
第2回 古典力学の破綻(2)(テキスト7A・1節)
熱容量,原子の線スペクトル
第3回 波-粒子二重性 (テキスト 7A・2節)
電磁放射線の粒子性,粒子の波動性
第4回 シュレーディンガー方程式(テキスト 7B・1節)
第5回 波動関数と確率密度(テキスト 7B・2-3節)
第6回 演算子(テキスト7C・1節)
第7回 重ね合わせと期待値(テキスト 7C・2節)
第8回 不確定性原理と量子力学の基本原理(テキスト 7C・3-4)
第9回 並進運動(1) (テキスト 8A・1-2節)
1次元の箱の中の粒子,境界条件と規格化条件,波動関数の形と性質,エネルギー準位
第10回 並進運動(2) (テキスト 8A・3-4節)
3次元の箱の中の粒子,トンネル現象
第11回 振動運動 (テキスト 8B・1-2節)
調和振動子,振動子の性質
第12回 回転運動(1) (テキスト 8C・1節)
平面上の円運動,極座標と座標変換
第13回 回転運動(2) (テキスト 8C・2節)
3次元空間の回転,波動関数とエネルギー,角運動量,空間量子化,ベクトルモデル
第14回 スピン(テキスト 9B・1-2)
電子スピン,パウリの原理,フントの規則
第15回 まとめ
     期末試験
履修条件・関連項目
関連科目:数学各科目,力学,振動・波動の物理,電磁気学,無機化学Ⅰ
授業時間 30 時間と課題作成にかかる時間に加え、配布した講義資料や参考書を参照し、本学の標準時間数に準ずる予習と復習を行うこと
テキスト・教科書
「アトキンス物理化学(上)」第10版(東京化学同人)
参考書
講義内容が難しいと感じたら
中田宗隆「基礎コース物理化学I・量子化学」東京化学同人
マッカーリ・サイモン「物理化学(上)」東京化学同人 など
もっと詳しく勉強したいときは
原田義也「量子化学」裳華房
成績評価の方法
対面講義の場合には期末試験(100%)で評価する
量子化学の基礎・基本原理に関する知識、知識の応用、具体的な事例の理解を評価する
教員から一言
この講義では式の導出,微分積分計算などが多く登場します。講義中ではなるべく計算の段取りを追うことを目指しますが,講義内容の十分な理解のために教科書の例題など予習復習を行ってください。
キーワード
量子力学,ハミルトン演算子,シュレーディンガー方程式,固有値,固有関数,波動関数,不確定性原理
オフィスアワー
メールで相談後、研究室に来てください
備考1
成績分布
2020年度S:2%、A:43%、B:45%、C:4%、D:6%(オンライン、期末試験未受験者含)
2021年度S:6%、A:25%、B:44%、C:13%、D:12%(期末試験未受験者を含む)
備考2
Classroomのクラスコード「gp4ebvx」
参照ホームページ
開講言語
日本語
語学学習科目
更新日付
2022/04/06 8:36:16